On the Security of RFID

Hung-Min Sun Information Security Lab. Department of Computer Science National Tsing Hua University

What is RFID?

Radio-Frequency Identification Tag

Reference http://glossary.ippaper.com

Barcode v.s. RFID

Barcode

- require a direct line of sight to the printed barcode
- have no read/write capability
- cheap

- can be read at much greater distances
- unique object id
- more expensive

Reference www.cs.utexas.edu/~shmat/

Where Are RFID Used?

Physical-access cards

Inventory control

Gillette Mach3 razor blades, ear tags on cows, kid bracelets in waterparks, pet tracking

Logistics and supply-chain management

Track a product from manufacturing through shipping to the retail shelf

Gas station and highway toll payment

Mobile SpeedPass

Reference www.cs.utexas.edu/~shmat/

Commercial Applications of RFID

 RFID cost is dropping dramatically, making it possible to tag even low-value objects

- Around 5c per tag, \$100 for a reader
- Logistics and supply-chain management is the killer application for RFID
 - Shipping, inventory tracking, shelf stocking, anti-counterfeiting, anti-shoplifting

Massive deployment of RFID is in the works

Wal-Mart pushing suppliers to use RFID at pallet level, Gillette has ordered 500,000,000 RFID tags

Future Applications of RFID

Location Awareness
Health Care
Apparel
Smart Shelf

Reference http://www.rfidjournal.com/

RFID Tag Power Sources

Passive (this is what mostly used now)

Tags are inactive until the reader's interrogation signal "wakes" them up Cheap, but short range only

Semi-passive

- On-board battery, but cannot initiate communication
- Can serve as sensors, collect information from environment: for example, "smart dust" for military applications

More expensive, longer range

Active

On-board battery, can initiate communication

Reference www.cs.utexas.edu/~shmat/

RFID Frequency Ranges

• Low frequency (LF): (100~500KHz) 125 kHz, 135 kHz

Shortest read range < 50 cm, slowest read speed

Strong ability to read a tag on objects with liquid or metal components, Physical Access Control, Animal Identification

• High frequency (HF): (10~15 MHz), 13.56MHz

Read range < 1.5 meter, cheapest tag

Smart cards, smart shelves, health care

• Ultra-high frequency (UHF): (860 to 960) MHz

Read range 3~10m, faster read speed

EPC tags, supply chain systems

• Microwave: (> IGHz), 2.45GHz, 5.8GHz

Read range 3~10m, fast read speed, most expensive Supply chain systems, airline baggage tracking

Security Problems of RFID

- Eavesdropping
- Hot-listing
 - Attacker has special interests in certain items
- Replay attack
- Cloning Fundamental problem:
 - Lack of mutual authentication
- Tracing
- Data forging
- Denial of Service

Challenges of RFID

- Low-cost tag costs US\$0.05
- Limited computational ability and storage
 - Cannot implement common cryptographic functions on the tags
- Goal: Lightweight computation approaches for securing RFID
 - Lightweight mutual authentication protocols

However, RFID tag ...

- No or very limited power
- Little memory
 - Static 64- or 128-bit identifier in current 5-cent tags
- Little computational power
 - A few thousand gates at most
 - Static keys for read/write access control
- Not enough resources to support public- or symmetric-key cryptography
 - Cannot support modular arithmetic (RSA, DSS), elliptic curves, DES, AES; hash functions are barely feasible
- Is resettable
 - Passive tag resets when power off

EPCglobal Class I Generation 2

- Most popular in long-range RFID applications
- Frequency: 860-960 MHz
- Reading range:10-20 Feet
- ISO 18000-6C

Reader

Problems in EPCglobal CIG2

- Long reading range
- A naïve protection:
 - Use of I6-bit random number
- Tag ID is transmitted in plaintext
- Lack of "reader-to-tag" authentication
 Malicious Reader
 RFID tag

Secure Protocols for RFID

Secure **RFID** Protocols

Hash-based Approaches

• [1] S. Weis, "Security and Privacy in Radio-Frequency Identification Devices," master's thesis, Massachusetts Inst. of Technology (MIT), Massachusetts, USA, May 2003.

 [8] M. Ohkubo, K. Suzuki, and S. Kinoshita, "Cryptographic Approach to "Privacy-Friendly" Tags," RFID Privacy Workshop, MIT, Massachusetts, USA, Nov. 2003.

•[9] T. Dimitriou, "A Lightweight RFID Protocol to protect against Traceability and Cloning Attacks," Proc. 1st IEEE Conf. Security and Privacy for Emerging Areas in Comm. Networks (Secure Comm '05), Sep. 2005.

 [12] G. Tsudik, "YA-TRAP: Yet Another Trivial RFID Authentication Protocol," Proc. 4th IEEE Int'l Conf. Pervasive Computing and Comm. (PerCom'06), Mar. 2006.

•[13] G. Avoine and P. Oechslin, "A Scalable and Provably Secure Hash Based RFID Protocol," Proc. 3rd IEEE Int'l Workshop Pervasive Computing and Comm. Security (PERCOMW '05), Mar. 2005.

•[14] D. Henrici and P. M["] uller, "Hash-Based Enhancement of Location Privacy for Radio-Frequency Identification Devices Using Varying Identifiers," Proc. First IEEE Int'l Workshop Pervasive Computing

and Comm. Security (PerSec '04), Mar. 2004.

 [36] Ohkubo, M., Suzuki, K., and Kinoshita, "RFID privacy issues and technical challenges," Commun. ACM 48, 9 (Sep. 2005).

Secure **RFID** Protocols

Lightweight Approaches

•[23] A. Juels, "Strengthening EPC Tags Against Cloning," Manuscript, RSA Laboratories, Mar. 2005.

•[24] Y.C. Chen, W.L. Wang, and M.S. Hwang, "RFID Authentication Protocol for Anti-Counterfeiting and Privacy Protection," Proc. 9th IEEE Int'l Conf. Advanced Comm. Technology (ICACT '07), Feb. 2007.

•[25] A. Juels, "Minimalist Cryptography for Low-Cost RFID Tags," Proc. 4th Int'l Conf. on Security in Comm. Networks (SCN '04), Sep. 2004.

 [26] Y.Z. Li et al., "Security and Privacy on Authentication Protocol for Low-cost RFID," Proc. Int'l Conf. Computational Intelligence and Security (CIS '06), Nov. 2006.

•[27] P. Peris-Lopez et al., "M2AP: A Minimalist Mutual-Authentication Protocol for Low-Cost RFID Tags," Proc. 3rd Int'l Conf. Ubiquitous Intelligence and Computing (UIC-06), Sep. 2006.

 [29] H.Y. Chien, "SASI: A New Ultralightweight RFID Authentication Protocol Providing Strong Authentication and Strong Integrity," IEEE T. Dependable Secure Comput., vol. 4, no. 4, pp. 337–340, 2007.

 [32] D.N. Duc et al., "Enhancing Security of EPCglobal Gen2 RFID Tag against Traceability and Cloning,"

• Proc. 3rd Conf. Symp. Cryptography and Inf. Security (SCIS'06), Jan. 2006.

 [35] A. Juels and S. Weis, "Authenticating Pervasive Devices with Human Protocols." Crypto, Aug. 2005.

Security Analysis of RFID Protocols

Hash-based Protocols								Lightweight Protocols								
		[1]	[8]	[9]	[12]	[13]	[14]	[36]	[23]	[24]	[25]	[26]	[27]	[29]	[32]	[35]
Tracing		ŧ	—	†	ŧ	—	†	—	ŧ	†		$O(l^2)$	†	ŧ	ŧ	ŧ
Skimming		†	—	—	—	—	—	—	†	†		†	†	O(2 ²¹)	O(2 ¹⁶)	ŧ
Spoofing		ŧ	—	†	—	—	—	—	$O(q_J)$	O(2 ¹)	O(2 ² <i>L</i>)	†	†	ŧ	ŧ	ŧ
Cloning		ŧ	—	—	—	—	—	—	$O(q_J)$	O(2 ¹)	$O(2^{3kLm})$	†	†	O(2 ²¹)	O(2 ³²)	ŧ
q_J	size of PINSET — not possible							†	constar	nt time						
l	bit length of pseudonym m secu					security parameter										
L	L bit length of one-time pad					k 1	number of pseudonyms									

So... How to design a secure protocol for low-end RFID Tag?

Hung-Min Sun and Wei-Chih Ting,
"A Gen2-based RFID Authentication Protocol
for Security and Privacy," *IEEE Transactions on Mobile Computing*, Vol. 8, No. 8, pp. 1052-1062,
2009.

• Setup at manufacturer

U

Gen2+

ck'

J	e	12	- T			a	ı b)	(a,b)
				08ED		↓	· •		$\overline{}$
				244D		1	\mathbf{b}		
	<i>_</i>	×	9204F	7C21	9001	72263D93E	4DB11BB7083DFF	9698531E6E273711C	
	1	×	9204F	9162	0002	9296C6968	43BE97ECC2353F	1F2876952FF8684D7	U
	1	×	9204F	6963	0003	ØEB82DC21	741E7DCEEB0362	30D0E50FC86DB1B05	
	1	×	9204F	023C	0004	22475709B	DØBDØB5E3E661E	67F93B8463FDD8F92	
	Þ	×	9204F	222F	0005	DD7245262	CD12DD68B3E59C	225985B36D5F4C8B0	
	Þ	×	9204F	1556	0006	9ED38B1C1	BE272152ED4758	750B7B2C9D69EFDD2	
	Þ	×	9204F	7222	0007	4D8B67CF8	1D963B15125248	1F2C07063DC53CC03	
	Þ	×	9204F	969D	000	DØ	DF318EEB82D2F3	253F3F0468F8FFB8F	
	Þ	×	9204F	1618	0009	352B56260	0DC71B3E702C71	6532C1B60E9851E35	
	Þ	×	9204F	4FBC	0010	14665B6E6	BE574D33FB646C	62BBCE9EE851DC9BE	
	Þ	×	9204F	C9DB	9011	9832F206C	B40669517FD513	D1FB0C3C277098BB4	
	Þ	×	9204F	EF7F	0012	EB9636EF4	743FF038BB93B2	99BBDE1070CE945D6	
	Þ	×	9204F	4709	0013	EC498479C	39978240D4F4F9	587294860DE162C43	
	1	$ \mathbf{X} $	9204F	2F93	0014	B54361BDC	2EED17E1B1147C	F7E8E017E5251F5BD	
	1	×	9204F	5D7E	0015	8F8336BEB	21585B599635F5	DC0486E6214716114	
	Þ	×	9204F	•••	0016	0B931D510	CC7CB4157FEFD9	E45726B332B4DB8DF	
	Þ	×	9204F	0004B0	0017	B70EE74B7	36FEEEF69180D9	22CB8C0105F8E426C	

Gen2+

• Results before enhancement

• Results after enhancement

Thank You Q & A